Fit concentration-response data using Curve Class2 approach
Source:R/curveclass2_base.R
fit_cc2_modl.Rd
Curve Class2 uses 4-parameter Hill model to fit the data. The algorithm assumes the responses are in percentile. Curve Class2 classifies the curves based on fit quality and response magnitude.
Arguments
- Conc
A vector of log10 concentrations.
- Resp
A vector of numeric responses.
- classSD
A standard deviation (SD) derived from the responses in the vehicle control. it is used for classification of the curves. Default = 5%.
- minYrange
A minimum response range (max activity - min activity) required to apply curve fitting. Curve fitting will not be attempted if the response range is less than the cutoff. Default = 20%.
- ...
for additional curve class2 parameters (currently none)
Value
A list of output parameters from Curve Class2 model fit. If the data are fit or not fittable (fit = 0), the default value for tp, ga, gw, bt pvalue, masks, nmasks is NA. For cc2 = 4, it is still possible to have fit parameters.
modl: model type, i.e., cc2
fit: fittable, 1 (yes) or 0 (no)
aic: NA, it is not calculated for this model. The parameter is kept for compatability.
cc2: curve class2, default = 4
tp: model top, <0 means the fit for decreasing direction is preferred
ga: ac50 (log10 scale)
gw: Hill coefficient
bt: model bottom
pvalue: from F-test, for fit quality
r2: fitness
masks: a string to indicate at which positions of response are masked
nmasks: number of masked responses
Details
- cc2 = 1.1
2-asymptote curve, pvalue < 0.05, emax > 6\*classSD
- cc2 = 1.2
2-asymptote curve, pvalue < 0.05, emax <= 6\*classSD & emax > 3\*classSD
- cc2 = 1.3
2-asymptote curve, pvalue >= 0.05, emax > 6\*classSD
- cc2 = 1.4
2-asymptote curve, pvalue >= 0.05, emax <= 6\*classSD & emax > 3\*classSD
- cc2 = 2.1
1-asymptote curve, pvalue < 0.05, emax > 6\*classSD
- cc2 = 2.2
1-asymptote curve, pvalue < 0.05, emax <= 6\*classSD & emax > 3\*classSD
- cc2 = 2.3
1-asymptote curve, pvalue >= 0.05, emax > 6\*classSD
- cc2 = 2.4
1-asymptote curve, pvalue >= 0.05, emax <= 6\*classSD & emax > 3\*classSD
- cc2 = 3
single point activity, pvalue = NA, emax > 3\*classSD
- cc2 = 4
inactive, pvalue >= 0.05, emax <= 3\*classSD
- cc2 = 5
inconclusive, high bt, further investigation is needed
References
Huang R (2022). “A Quantitative High-Throughput Screening Data Analysis Pipeline for Activity Profiling.” Methods in molecular biology (Clifton, N.J.), 2474, 133—145. ISSN 1064-3745, doi:10.1007/978-1-0716-2213-1_13 .
Examples
fit_cc2_modl(c(-9, -8, -7, -6, -5, -4), c(0, 2, 30, 40, 50, 60))
#> $aic
#> [1] NA
#>
#> $fit
#> [1] 1
#>
#> $modl
#> [1] "cc2"
#>
#> $cc2
#> [1] 1.1
#>
#> $gw
#> [1] 0.6
#>
#> $tp
#> [1] 57.4
#>
#> $bt
#> [1] -4
#>
#> $ga
#> [1] -6.9
#>
#> $masks
#> [1] "0 0 0 0 0 0"
#>
#> $nMasks
#> [1] 0
#>
#> $pvalue
#> [1] 0.01651874
#>
#> $r2
#> [1] 0.9699059
#>